
Theor Appl Genet (1996) 92:130-139 �9 Springer-Verlag 1996 

M. J. Mackinnon �9 S. van der Bcek  �9 B. P. Kinghorn 

Use of deterministic sampling for exploring likelihoods in 
linkage analysis for quantitative traits 

Received: 1 March 1995 / Accepted: 7 July 1995 

Abstract Deterministic sampling was used to numeri- 
cally evaluate the expected log-likelihood surfaces of 
QTL-marker linkage models in large pedigrees with 
simple structures. By calculating the expected values of 
likelihoods, questions of power of experimental designs, 
bias in parameter estimates, approximate lower-bound 
standard errors of estimates and correlations among 
estimates, and suitability of statistical models were ad- 
dressed. Examples illustrated that bracket markers 
around the QTL approximately halved the standard 
error of the recombination fraction between the QTL 
and the marker, although they did not affect the stan- 
dard error of the QTL's effect, that overestimation of the 
distance between the markers caused overestimation of 
the distance between the QTL and marker, that more 
parameters in the model did not affect the accuracy of 
parameter estimates, that there was a moderate positive 
correlation between the estimates of the QTL effect and 
its recombination distance from the marker, and that 
selective genotyping did not introduce bias into the 
estimates of the parameters. The method is suggested as 
a useful tool for exploring the power and accuracy of 
QTL linkage experiments, and the value of alternative 
statistical models, whenever the likelihood of the model 
can be written explictly. 
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Introduction 

Searching for quantitative trait loci (QTLs) using DNA 
markers in commercially used animal and plant species 
is now the focus of many agricultural genetic research 
programmes (e.g. Paterson et al. 1988; Edwards et al. 
1987; Haley et al. 1990; Keim et al. 1990; Georges et al. 
1995). Because of the expense in both genotyping and 
generating the large experimental populations required 
for such research, effort has been spent in optimizing the 
design of experiments so that maximum information is 
yielded at minimum cost. The design process requires 
consideration of the statistical power of an experiment 
(i.e. the probability of detecting a QTL if it is segregating 
in the population), and the accuracy with which the 
information on the QTL (e.g. size of effect, relative 
dominance, allele frequency, and location in the 
genome) is obtained. 

The method of maximum likelihood is often used for 
analyses because of its ability to separate the different 
factors influencing the observed contrast between alter- 
native marker-genotype means (i.e. additive and domi- 
nance components of the gene effect, gene frequency, 
recombination fraction between the marker and the 
QTL) (Weller 1986, 1987; Jensen 1989; Lander and 
Botstein 1989; Luo and Kearsey 1989). However, be- 
cause the likelihoods are often complex, and theoretical 
knowledge of the statistical properties of these models is 
incomplete, it is not always possible to predict the power 
of such analyses, or the bias and accuracy of maximum- 
likelihood estimators. Hence, large numbers of repli- 
cates of stochastic simulated data have been used to 
empirically find these properties for given designs (e.g. 
Weller 1986; Knott and Haley 1992; Van Ooijen 1992; 
Darvasi et al. 1993). For simpler experiments, such as 
those used for the estimation of recombination fractions 
between two markers from data of a given cross, it has 
been proposed that questions of the power and accuracy 
of estimates can be addressed by computing expected 
values of likelihoods under different hypotheses (Ed- 
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wards 1984; Ott 1991). For example, to predict power, 
one can compute the expected values of the likelihood 
under the true model and null hypothesis and calculate 
the expected likelihood ratio test and thereby the power. 
To predict accuracy of parameters, one can compute the 
first and second derivatives and hence the information 
matrix around the maximum of the likelihood and use 
its inverse to compute lower-bound standard errors and 
correlations for the estimated parameters. In this paper 
it is shown how the same procedure can be used to 
predict the power and accuracy of linkage experiments 
involving quantitative traits and we propose it as a more 
efficient method for designing optimum experiments 
and exploring alternative statistical models than em- 
ploying replicated stochastic simulations. By using 
examples based on the half-sib design typically used in 
animal and outbred tree species, the utility of the 
method is demonstrated. In these examples, four issues 
are addressed: the shape of the likelihood surface with 
respect to parameters when single and bracket markers 
are used; bias caused by error in assumed known pa- 
rameters; accuracy and correlations among parameters 
estimated by maximum likelihood; and the power, accu- 
racy and bias relative to linear models when selective 
genotyping is practised, i.e. when only progeny from the 
two truncated tails of the phenotypic distribution are 
genotyped. 

Theoq 
Deterministic sampling 

Deterministic sampling is performed by systematically drawing 
values of a random variable X at fixed points, xr over the entire range 
of X. The number of observations, n i with value equal to xr is equal to 
the height of the density function of X at the point xl multiplied by the 
width of the interval between xl and xi+ 1 and the total number of 
observations in the population. For example, if X is a random 
variable sampled from a population of size 100 and is assumed to be 
distributed as N(0,1), then values of x i may be drawn at intervals of 0.1 
over the range from - 7 to 7. Then, n~ equals 100 x 0.1 x h i where hl is 
the height of the standard normal density function at point xv Thus 
the method is simply a numerical integration. Here it is called 
deterministic sampling to emphasize that the groups of observations 
that are created in the systematic sampling process are then "ana- 
lysed" under various models just as real data would be, whereas 
numerical integration is often used to simply obtain a single cal- 
culated value from all the data. In this sense the idea of Kinghorn et al. 
(1993) is followed: they explored the statistical properties of a major 
gene model and method of analysis using weighted samples from 
expected values of data given an underlying genetic model. 

Maximum-likelihood theory 

The general form of the likelihood, L, of a sample of size n of a random 
variable X which is assumed to be distributed according to a density 
function fix [| where | is a set of parameters which describe the 
population, can be written as: 

n 

L =  1-[ f(X/]O). (1) 
i = l  

If the parameters are unknown and are to be estimated from the data 
then O is replaced by the vector of estimates 6), and the expected log 

likelihood conditional on these estimates can then be predicted [see 
Ott (1991) and Edwards (1984) for descriptions of the method for 
calculating the expected log likelihood in the case of discrete data]. 
The expected value of the logarithm of the likelihood (log L) for a set 
of n data points sampled from a distribution with density dictated by 
the true parameter O conditional on a set of estimates of the pa- 
rameters | is given by: 

E(logL) = EIlog fif(x]O) 1 

=EI~log(f(xlO) ] 
n 

= ~ E [logf(xl 0)]  

= n ff(xl 0) logf(x ] O) dx. (2) 

However, (2) is only exact in the special case when a single hypothesis 
is assumed e.g. if the marker-QTL linkage phase is assumed known. 
When multiple hypotheses are being tested, calculation of the ex- 
pected value of the log likelihood requires an approximation because 
it involves taking the log of a weighted sum of the likelihoods under 
the different hypotheses. For example, if the QTL genotype of a sire 
and the linkage phase with the marker is unknown, then the likeli- 
hood of the data from his family is computed for each possible sire 
marker-QTL genotype, weighted by the prior probability of the sire 
having that genotype and then summed. In such cases the expected 
log likelihood is derived as follows: 

=log(~E[exp((logPn)+ilogf(xl~)))]) 

= l o g ( ~ e x p  (E[ logPn]  +nlf/(xlO)logf(xlO)dx)) 

'~' log (~ exp (logPu + nffoof(xlO)logf(xl6))dx)) 
(3) 

where Pn is the prior probability that the Hth hypothesis is true. This 
approximation is expected to be very close for large n as shown below. 
The likelihoods for the models considered in this study are special 
cases of this general form. 

The deterministic sampling approach to exploring likelihood 
functions is to compute Equation (3) using numerical integration for 
different values of | given 0 .  In this way the behaviour of the 
likelihood surface with respect to parameter estimates is evaluated. 
The likelihood surfaces calculated from (3) have the property of 
maximizing at the true value of| as expected from an infinite sample, 
but with the shape expected from a finite sample. That is, when n is 
large, they represent the average shape [i.e. E(logL)] that would be 
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obtained over many replicates of simulated stochastic data. To 
demonstrate this property, ten replicate populations each with 100 
observations sampled from a standard normal distribution were 
simulated and maximum-likelihood estimates of the means were 
obtained (assuming the standard deviation was known). The likeli- 
hood profiles with respect to the estimated mean were computed and 
expressed as deviations from their maxima. These profiles are plotted 
in Fig. 1. The mean likelihood surface over ten such replicates which 
represents E(logL), also deviated from its maximum, is shown. The 
expected log-likelihood profile computed using (3) was also cal- 
culated and plotted. Even though there is variation among replicates 
in the mean due to sampling in finite populations, the average shape 
of the surfaces is only slightly broader than that predicted determinis- 
tically. Because it is the shape of the surface which yields information 
on parameter accuracy and power, the deterministic approximate 
approach to evaluating likelihood functions in finite populations of 
reasonable size is justified. 

A property of maximum-likelihood surfaces is that approximate 
lower-bound standard errors of maximum-likelihood parameter esti- 
mates can be obtained from the shape of the surface near the 
maximum. This requires invoking the large sample theory for maxi- 
mum-likelihood estimates (Kendall and Stuart 1979) which is that the 
distribution of the maximum-likelihood estimates is approximately 
normal with mean | and variance-covariance matrix equal to 
1/nI(| where I(| is the expected information matrix calculated 
from the expected value of the second derivatives of logL with respect 
to 0 ,  viz: 

I(| = -  EI~log[f(X[|  1. (4) 

In practice it may be difficult to find the explicit forms of the second 
derivatives of the likelihood function and expectations of these forms. 
In such cases, as in this study, the expected information matrix is 
replaced by a numerically derived observed information matrix 
which is evaluated at some distance, A, from each of the true par- 
ameter estimates. The standard errors and correlations between the 
estimates are calculated from the variance-covariance information 
matrix using the standard formulae. These are lower-bound standard 
errors for unbiased estimators according to the Cramer-Rao inequal- 

Fig. 1 Log likelihoods (expressed as deviations from their maxima) 
as a function of the maximum-likelihood estimate of the population 
mean for ten replicate populations ( - - - )  each of 100 observations 
sampled from a normal distribution N(0, 1). The average of these ten 
replicates (also deviated from its maximum) is also shown ( . . . . . . .  ). 
The expected log-likelihood profile ( ) has a shape similar to the 
average shape of the replicates 
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ity. Standard errors calculated using the full variance-covariance 
matrix in this way were termed here "multiparameter" standard 
errors because the standard errors on each estimate allow for 
covariances among estimates. Standard errors were also computed by 
taking the inverse of the information matrix in which non-diagonal 
elements (covariances) were set to zero. These standard errors, called 
"uniparameter" standard errors, are the same as those that would be 
obtained if evaluated from the shape of the likelihood surface around 
the maximum when all other parameter were at their true values, i.e. 
assumed known. 

Confidence intervals for a given parameter for a Type-I error A at 
the 100(1 - A)% probability level for these parameters are construc- 
ted based on standard normal theory as usual, viz: 

~) ++_ z(A/2)s~, (5) 

where s~ is the uniparameter standard error of ~) and z(A/2) is the 
standard normal deviate corresponding to a probability level of 
(1 - A / 2 ) .  

The approximate power of the experiment can be found by 
computing the ratio of the likelihood under the null hypothesis 
to the likelihood under the alternative hypothesis (the likelihood 
maximized with respect to all unknown parameters). The natural 
logarithm of this ratio, called the likelihood ratio test (LRT), is 
approximately distributed as half a chi-square variable with degrees 
of freedom equal to the difference in the numbers of parameters 
estimated in the two alternative hypotheses (Wilks 1938). Power can 
be calculated as the probability that twice the LRT exceeds the 
chi-square statistic for a Type-I error of A and 1 degree of freedom 
from a non-central chi-square distribution. For values of chi-square 
greater than 3.5 (i.e. for all gene effects which will be detectable with a 
Type-I error rate of below 6%) the non-centrality parameter in this 
distribution is very closely approximated by the expected chi-square 
value. Thus, given the parameters used to generate the data, the 
expected chi-square value, and hence the non-centrality parameter, 
can be predicted and the power computed from the non-centraI 
distribution. Approximate power can be also be predicted as the 
probability that the contrast between marker means is greater than 
the t-statistic for a Type-I error of A and appropriate degrees of 
freedom from a non-central t-distribution with a non-centrality 
parameter equal to the expectation of this contrast given the data 
parameters. This latter method, based on a linear analysis of between- 
marker means, ignores the effects of recombination which cause each 
marker group to be a mixture of normals and thus tends to slightly 
underestimate power (Darvasi et al. 1993). However, it is used here to 
illustrate the correspondence between the power predicted from the 
LRT from maximum-likelihood analyses and the power predicted 
from linear analyses. 

Models 

The common model used for the examples in this study is as follows. A 
sire that is heterozygous for two linked marker loci with alleles M1 
and m 1 at the first locus and M z and m 2 at the second locus has many 
offspring which can be genotyped and sorted according to which 
paternal alleles they inherited. If the sire is in linkage phase, 
MtM2/mlm2, the possible paternal gametes transmitted may be 
M1M 2 and rntm ~ if no recombination or a double recombination 
between the marker loci occurs, or M~m 2 and miM~ if a single 
recombination event occurs. It is assumed that progeny can be 
assigned to these four possible marker genotypes unambiguously, i.e. 
the paternal marker alleles can be distinguished from the maternally 
inherited marker allles. The probability of recombination between the 
two markers is denoted R. In between these marker loci (called 
'bracket' markers) at a recombination fraction of r~ from the first 
marker and r 2 from the second marker, is situated a QTL with alleles 
Q and q. The sire is also heterozygous at the QTL and has a 
marker-QTL linkage phase of M1QM2/mtqm2. With respect to the 
QTL, the transmission of the alleles to the progeny is not certain so 
that a probability of inheriting alternative QTL alleles is assigned 
based on the phenotypic value and assumed distributions of the two 
alternative QTL groups. Assuming that the difference between 
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phenotypic means of progeny inheriting the Q versus q allele is e, that 
the overall mean of the population is #, and that the standard 
deviation within both these groups is a, then the respective likeli- 
hoods of an animal having a phenotypic value x given that it inherited 
the sire's Q or q alleles are given byf[(x - # - 1/2~)fir)] =f(xlQ) and 
f [ (x  - # + 1/2o:)/a)] =f(xlq) wheref(Y) is the standard normal den- 
sity of variable Y. 

The likelihoods,/~, of observing phenotypic value x given that the 
progeny has marker genotype i (i = 1,..., 4 for M,Mz, mare> M~mz 
and m~M2) are based on the estimates of the unknown parameters 
1~ = {~, ~, (7,~1' f2} as follows: 

p~ (1-e,)(1-e2) f x 
- 1--R ~ )-4-~--RJt- ~ ) 

+ ( 1 -  fl)(1 - ?2) x -  ti+�89 
e ) 7 _fi s 7 

( 1 - - ~ , ) ~  2 / x - - f t - - { ~ ' ~  ^ --^ -^ P' ~ f t  - 8- )+ri( l~P2!f( -x ~T +�89176 

if4- Pl (1~ r2}f(X- ~--1 ~ + (1 --;1) f2f (")C -- 7 1~ ) , (6) 

where r2 is calculated from 71 (which is estimated) and R (which is 
assumed known without error) as: 

^ R--r 1 
% = 1 _ 2 f  1 (7) 

The expected numbers of observations with value x in the data are 
equal to 1/2n(1 - R)P1, 1/2n(1 - R)P2, 1/2nRP 3 and 1/2nRP 4 where 
P~ denotes value of P~ when true values are used instead of estimates, 
i.e. when | = | Thus in the terminology of (2), P~ is equivalent to 
f(xI@) and gives the expected proportion of observations with value x 
in the ith marker class from a data set with true parameters 
O = {c~, #, rl,o } in the model described here. fii is equivalent tof(x[(~) 
and represents the density for value x conditional on being in the ith 
marker class and on the parameter estimates | The expected value of 
the log likelihood of the data under this model is then: 

E(logL)= n ~=,~ f P, log_P,.dx. (8) 

Note that (8) takes the form of (2) and not (3) because the site's 
marker-QTL genotype is assumed known. 

In the following examples (8) was evaluated using numerical 
integration for sets of | and | to determine the statistical properties 
of various models. The integrations were approximated using the tra- 
pezoidal rule at 100 points in the range of _+ 7 standard deviations. 

Numerical examples 

Example  1: accuracy of b racke t -marke r  versus 
s ingle-marker  m a p p i n g  

The  a im of this example  is to determine the accuracy of 
locating a Q T L  when bracket  markers  versus single 
markers  are used. This was examined by using (8) to 
calculate l ikelihoods over  a range of c~,/~, rl  (denoted f 
f rom here on) and 8 for n = 200 progeny  f rom one sire of 
known m a r k e r - Q T L  genotype  and  true values of 
c~ = 0.5, # = 0, R = 0.2, r = 1 and r = 0.05. F o r  the analy-  
sis in which only a single m a r k e r  is used, R was set to 0.5. 
The expected values of the l ikelihood rat io for these 

parameters  against  the null hypothesis  that  0{ = 0 when a 
single ma rke r  and  bracket  marke r s  are used were found 
to be 4.89 and 5.06 respectively. These values corre- 
spond well with the predict ion that  the L R T  is half  the 
expected chi-square value which in this case is calculated 
as (1 - 21") 2 0{z/(462/rO = 10.13 (Weller et al. 1990). F o r  a 
Type- I  error  rate of 5% and 1 degree of freedom, using 
10.13 as the non-central i ty  parameter ,  these L R T  values 
cor respond to powers  of 88 % and 89 % respectively. The  
corresponding power  using a two-tai led t-test f rom a 
distr ibution with a non-centra l i ty  pa rame te r  (expected 
value of t) equal to (1 -2r)0{/(2O/x/n ) - 3 . 1 8 ,  was also 
88% for the s ingle-marker  case. Thus  this set of pa-  
rameters  is typical of an exper iment  which might  be 
designed in practice. The  small difference in power  
between the single- and b racke t -marker  cases can be 
unders tood by compar ing  the be tween-marker  vari- 
ances in the two cases. F o r  the single ma rke r  this 
variance is: 

0{ 2 
Vs = n 7 ( 1  -- 2rl) 2, (9) 

and for the bracket  marke r  case is: 

, , , , 2 > 2  
I - R + " ( 1 0 )  

Using the ratio of  V s to VB, which is equal to the rat io of 
the F-statistics for be tween-marker  variances because 
the residual variance is the same in bo th  cases (ignoring 
the small cont r ibut ion  of recombina t ion  to within- 
marke r  variance), gives an approx ima te  relative numb er  
of  animals  required to achieve a given power  (ignoring 
different degrees of f reedom in the two cases). This ratio 
varies f rom 1 - R when the Q T L  is in the middle of the 
bracket  (r 1 = r2) to 1 when the Q T L  is located at the 
marker .  Thus  for a m a r k e r  spacing of R = 0.2, there is 
very little gain in power  by using bracket  markers ,  
especially if power  is high for the single markers .  This 
conclusion was also reached by Lander  and  Botstein 
(1989) and Darvas i  et al. (1993). 

The plots of logL  versus c~ and ? are shown in Fig. 
2a and b for the bracket-  and s ingle-marker  cases re- 
spectively. The  global m a x i m u m  is reached at  the true 
pa ramete r  values showing that  the maximum-l ikel i -  
hood  estimates are unbiased. The profiles with respect 
to ~ are symmetr ic  a round  0{ and much  steeper than  
those for ?. S tandard  errors in the single and bracket -  
marke r  cases are, respectively, 0.158 and 0.158 for 0{, and  
are 0.143 and  0.064 for ?. Thus while ~ is es t imated 
equally accurately in the single- and  b racke t -marker  
cases, P is est imated less accurately (by a factor of  abou t  
a half) using single markers  than  by using bracket  
markers .  This is because mos t  of the informat ion  on 
comes f rom the be tween-marker  means  which are not  
altered by the use of an extra marker .  In contrast ,  
informat ion on ~ comes entirely f rom wi th in-marker  
groups  when using single markers ,  but  for bracket  
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markers also largely from recombination events be- 
tween markers. However, twice the number  ofgenotypes 
have to be performed when using bracket markers 
versus single markers so that  this extra accuracy in ? 
does not  come without  cost. 

Relationships between maximum-likelihood esti- 
mates of ~ and f for bracket- and single-marker analyses 
are shown in Fig. 2c. These lines are equivalent to 
joining the maxima of the profiles for ? over a range of c~ 
as depicted in Fig. 2 a and b. It is clear from these that  the 
dependence of ? on ~ is far stronger for single markers 
than for bracket markers. The relevance of this depend- 
ence is that  variation in c~ caused by sampling is asso- 
ciated with variation in ?, i.e. there is covariation be- 
tween estimates. This means that  inaccuracy in one 
estimate caused by sampling will introduce a bias in the 
other estimate. The nature of the joint  distribution of 
these two parameters, represented by the surfaces shown 
in Figs. 2a and b, is such that  the bias will differ depend- 
ing on whether c~ is overestimated or underestimated. If 
c~ is underestimated, then f also is underestimated in 
both the bracket and single-marker case. If ~ is over- 
estimated, then the maximum-likelihood estimate of ? 
reaches a peak at some intermediate value for f in the 

Fig. 2 Expected log-likelihood surfaces with respect to the maxi- 
mum-likelihood estimates of a QTL effect (~) and its recombination 
fraction from a marker (?) (a and b), the relationship between ~ and 
(e), and the marginal density of ? conditional on ~ (d) for bracket- 
marker and single-marker analyses of 200 progeny where true par- 
ameters of the QTL are c~ = 0.5 and r = 0.05 

bracket case but tends towards 0.5 in the single-marker 
case. The net consequence of the asymmetry in f and 
symmetry in ~ can be described by the marginal dis- 
tribution of ?, i.e. the probability of getting an estimate of 

averaged over the distribution of 01. The marginal 
density for f calculated assuming c~ is normally distrib- 
uted N(0.5, 0.158) is shown in Fig. 2d for the single- and 
bracket-marker cases. This density shows that most  of 
the mass falls around r in the bracket-marker case but 
that  the distribution is wide for the single-marker case. 
This means that more accurate localization of a QTL is 
obtained when bracket markers are used, as pointed out 
by Lander  and Botstein (1989). 

Apparent from these marginal densities is the fact 
that  the probability of locating the Q T L  at the marker  is 
greater than locating it in the middle of the bracket. 
Thus a disproportionate number of QTLs will be es- 
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Fig. 3 Bias in estimates of  ? ~ ) and 02 (-  Q as a function of 
the est imated recombinat ion  fraction between two bracket  markers  
(R) where the true values are R = 0.2, a = 0.5 and r = 0.05 for a 
popula t ion  of 200 individuals 

given in (6). Because r 1 (= r) is expressed relative to R, 
the error in ? should be relative to the error in R. Bias in c~ 
was less than the bias in ? (relative to the simulated 
value) but was also positive reflecting the partial 
dependence between ~ and ? found in Example 1. This 
example illustrates that error in the estimates of recom- 
bination between markers can produce bias in QTL- 
parameter estimates. While the bias in ? is predictable, 
because r is estimated as a relative position, this can 
introduce bias in related parameters such as & However, 
the amount of bias is well within the range of standard- 
error estimates of the parameters for populations of this 
size (given in Example I for this case) and so is unlikely 
to be of practical significance in experiments of moder- 
ate power. Bias would be reduced if information from 
other markers which are more accurately located is used 
to locate the QTL when the bracket markers are not 
fully informative. 

timated to be located at the marker itself. This problem 
will be exacerbated in situations of low power. As an 
example, the marginal distribution for the case where 
c~ = 0.1 (which was found also to have a standard error of 
0.158) was also calculated and plotted (Fig. 2d). In this 
case the probability of locating the QTL on the marker 
is almost as high as locating it at its true value. Thus 
there is a tendency to locate a QTL at the marker when 
the power to detect the QTL is low. This problem may 
be partly alleviated by using more than two markers in 
the analysis if the two closest markers bracketing the 
QTL are not fully informative. This example illustrates 
how the joint distribution of parameter estimates as 
represented by the multidimensional shape of the likeli- 
hood surface can dictate the confidence in an estimate 
when estimates are not independent. The behaviour of 
one estimate with respect to another could be similarly 
examined in other models or data structures. 

Example 2: bias caused by wrongly 
specified parameters 

The purpose of this example is to examine bias in the 
estimate of~ ~ when R is not the true value. This situation 
would occur if the marker map was in error due to 
genotyping errors or to the low power in the data used 
for map construction. To examine this bias, the same 
situation used in Example 1 is employed (~ = 0.5, # = 0, 
r = 0.05, n = 200, o-= 1, R = 0.2), except now error is 
introduced in R to give an estimate, R, which ranges 
from 0.1 to 0.3. (The single-marker case is not included in 
this analysis). Maximum-likelihood estimates of ~ and ?, 
holding ~ equal to its true value, were computed over 
the range of R. 

Figure 3 shows the bias in ~ and P as a function of/~. 
The bias in ? is approximately a 1Tl_ultiplicative factor of 
the error in R. For example, when R is 0.25 then ? is 0.06, 
i.e., a 20% error in both. This relationship is understood 
from the form of the likelihood-equation components 

Example 3: accuracy of parameter estimates using 
simple versus complex models 

In this example the purpose is to obtain estimates of 
standard errors and correlations among parameter esti- 
mates with two alternative models to ascertain whether 
one model is advantageous in terms of accuracy of 
estimation. 

The basic model used for the previous example is 
expanded to include more parameters by writing the 
likelihood in terms of three genotypes (QQ, Qq, and qq) 
rather than in terms of the two alleles (Q or q) as before. 
The three genotype model (called the complex model, C) 
requires a density function for each of the three possible 
genotypes. Means of the genotypes are written as # + a, 
# + d and # - a where a is the value of the QQ pheno- 
type, - a the value of the qq phenotype and d the value of 
the Qq phenotype, all expressed relative to a population 
mean of #. Expressing the likelihood in terms of geno- 
types of the progeny, rather than in terms of the allele (Q 
or q) inherited from the sire, requires the introduction of 
another parameter, p, for the frequency of the Q allele in 
the dam population.^Thus there are six unknown 
parameters, | d} compared with four 
(O = {~,/),Ld}) for the model used previously (called the 
simple model, S). The ~ in the S model is equivalent to 
a + (1 - 2p)d in the C model. 

For a single sire, the C model has likelihood compo- 
nents, Pi, equal to: 

-e,)(1-e9 (x-~-a~ [ e,e~ /3'='0(1 ~7-/~ f ~- ]+ Pl---TR 

l + (1 -iO) (1 i ~ R -  f 

+,1 
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~1~2 ( X - - D - - ~ )  I ( 1 - -  ~1) ( 1 - -  /3 /32 = P ] ~ - R  f a 7 ] - - -~  

--F1)( 1 --f2)  X--  + ( 1 - / 3 ) ( 1  ~ - Z ~  f ( ~ + a )  

(x /33=/3(1 R*)r2f  d j +  /3 R 

'4=/3rl(l-~R r2)f(X--~--~)-l-[/3 (1--rl)rZR 

+,, 

) + ( 1 - / 3 ) ( 1  ~ x - ~ + a  . (11) 

So far it has been assumed that the sire is hetero- 
zygous at the QTL and that the marker-QTL phase is 
known. In practice this may not be true, in which case it 
is necessary to compute the likelihood for a single sire 
conditional on all possible sire QTL genotypes, and take 
the sum of these likelihoods weighted by the prior 
probabilities of the sire having these QTL genotypes. 
The appropriate expressions for P~ for sire genotypes 

other than M1QM2/rnaqm 2 a r e  as  follows. When the 
hypothesi~d sire i.s MlqMz/mlQm2 then the expr~sions 
in (11) for P1 and Pzare swapped (i.e./~2 becomes Pt  and 
vice versa), and P3 and P 4  a r e  swapped. If the 
hypothesized sire is homozygous for the QTL then/3 i is 
the same for all i and is equal to 

= - + (1 -- (i = 1,.. 4) 

and 

(12) 

for sires with hypothesized genotypes of M1QM2/ 
mlQm2 and MlqM2/mlqm z respectively. In practice the 
analysis will be performed over several sire families to 
obtain enough power to detect a QTL. The likelihood is 
therefore summed over all families. A full derivation of 
the likelihood pooling over families and allowing for the 
four possible QTL genotypes in the sire for each family is 
given by Mackinnon and Weller (1995). 

Data were deterministically simulated under the C 
model for a case where n = 1000 with 100 progeny in 
each of ten sire families, and with parameter values of 
a = 0.05, d = 0, r = 0.05, p = 0.5, # = 0 and o-= 1. Be- 
tween-family variation due to genes other than the QTL 
in question was not incorporated into the simulated 
data. In this case the values of a and ~ in the S model are 
equivalent to a and ~ in the C model. The QTL was 
assumed to be at Hardy-Weinberg equilibrium in the 
population of sires so that only a fraction 2p (1 - p) of 
the sires (5 of 10 in this case) were heterozygous and the 
rest were homozyzous. The approximate power for such 
an experiment against the null hypothesis that the QTL 

Table 1 Lower-bound estimates 
of standard errors 
(multiparameter estimates on 
diagonals, uniparameter 
estimates in parentheses below) 
and correlations among 
maximum-likelihood estimates 
of QTL parameters for a 
population of 1000 individuals in 
10 sire families where true values 
are a = 0.5, d = 0, r = 0.05, 
p = 0 . 5 , # = 0 a n d  a =  1 

Model Parameter c~ d ? /3 /) 

Simple ~ 0.057 0.154 0.000 -0.029 
(0.055) 

P 0.047 0.000 - 0.053 
(0.047) 

/) 0.026 0.008 
(0.026) 

r~ 0.019 
(0.019) 

Complex g~ 0.055 -0 ,014 0.152 -0.043 0.035 -0,353 
(0.051) 

d 0.159 --0.000 --0.002 --0.789 -0.010 
(o.o51) 

0.047 --0.007 0.004 --0.100 
(0.047) 

/5 0.111 --0.552 0.015 
(0.048) 

O.lOO 0.002 
(0.027) 

0 0.021 
(0.020) 
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effect is zero (a = 0 and d = 0) is very close to 100%. 
Likelihoods based on (3) for the C and S models were 
fitted to these data and their second derivatives evalu- 
ated at small distances (A = 0.01 or 0.005) from the true 
values to give the observed information matrix. Multi- 
parameter and uniparameter standard errors, and cor- 
relations among estimates were calculated. When the S 
model was fitted, the maximum-likelihood estimate of a 
was found to be inflated (~ = 1.025) because of the 
assumption that each QTL genotypic group was a single 
normal population when, in fact, it was a mixture of 
normals (e.g. QQ and Qq animals are grouped together 
as Q animals under the S model), d was fixed at this 
maximum-likelihood estimate when the other param- 
eters were being evaluated close to the maximum. 

Standard errors and correlations are given in 
Table 1. (Because the maximum difference in value for 
when A = 0.01 versus A = 0.005 was only 0.01, only 
those for A = 0.01 are shown.) Uniparameter and multi- 
parameter standard errors were similar for the S and C 
models for parameters common to both models (a, #, r 
and o9 with the exception of/~ which had a considerably 
higher standard error from the C model than the S 
model. This was due to the strong correlation between 

and the two extra parameters in the C model, i3 and 
d. Correlations among them were also similar except for 
a stronger correlation between c~ and d in the C model 
than in the S model. While it is not possible to assign a 
level of significance to these apparent lack of differences 
in accuracy between the two models, it can be concluded 
that there is not a cost in terms of accuracy of estimation 
of the QTL's effect and its location when using models 
with more unknown parameters. Indeed, the extra inform- 
ation on other parameters, such as population fre- 
quency and dominance effects obtained using the more 
comprehensive model, is advantageous because such 
information may be important for optimizing the way 
the QTL is exploited in the population using marker- 
assisted selection. However, the higher standard errors 
and correlations for the extra parameters, i0 and 3, 
somewhat limits confidence in the accuracy of the esti- 
mates which must be considered if these parameters are 
used in the design of breeding programmes. 

Both the C and S models have been used to estimate 
parameters for QTLs affecting milk production in dairy 
cattle (Bovenhuis and Weller 1994; Georges et al. 1995). 
This example can be extended to explore alternative 
data structures and models which could be used to 
optimize the accuracy of estimating certain parameters. 

Example 4: selective genotyping 

maxima, asymmetry) which are relevant for analyses on 
selected data. 

The same parameters for Example 1 were used (c~ = 1, 
/~ = 0, r = 0.05, a = 1) except that now the 200 progeny 
that were genotyped come from the top 25% and bot- 
tom 25 % of 400 progeny ranked on phenotype. Letting 
n now equal the number genotyped (rather than 
phenotyped) and S the proportion of those phenotyped 
which are also genotyped, then the likelihood equa- 
tion (8) can be modified to include those not genotyped 
to be: 

4 ~ 4 - T  

E(I~ ~ S i:1}-2 r~P'l~ + S i :~=1 -oo ~ P, log /3i dx 

n 4. T 

(13) 

where Tis the point of truncation above the mean of the 
phenotypic distribution corresponding to the propor- 
tion selected for genotyping in the upper tail (and simi- 
larly for - T in the lower tail), and superscript * on P 
and P denotes the portion of the population for which 
no marker information is available. For this portion we 
set P* = /3 .  = 1/4. For the genotyped portions, the 
values of Pi and P~ are as in previous equations. 

The likelihood surface with respect to ~ and ? is 
shown in Fig. 4. This surface can be compared with 
Fig. 2 a (drawn with the same range of ~ and ?) which is 
the analogous case for when selective genotyping is not 
used, i.e. when the 200 progeny which are genotyped 
comprise the full data set. From these figures it can be 

Fig. 4 Expected log-likelihood surface as a function of c~ and f when 
selective genotyping is practised by genotyping only those individuals 
with phenotypes from the top 25% and bottom 25% of the distribu- 
tion from a population of 400 progeny in which the true QTL 
parameters are c~ = 0.5, r = 0.05,/z = 1 and a = 1 

n = 400 50%geno~ped 
"570 t 

-571 

-572 
,_1 

-573 

The purpose of this example is to determine whether, if 
selective genotyping is practised, the estimates of pa- 
rameters are altered and whether the gain in power is that 
predicted by Darvasi and Soller (1992) if a linear analy- 
sis is used. Also, it is useful to determine whether the 
likelihood surface has any special features (e.g. local 
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Table 2 Estimates of lower-bound standard errors (multiparameter 
estimates on diagonals, uniparameter estimates in parentheses below) 
and correlations among parameter estimates for a population of 200 
genotyped individuals representing 50% (selective genotyping) or 
100% of the number  of phenotyped individuals for a QTL with 
parameters c~ = 0.5, # = 0, r = 0.1 and {r = 1 

Proport ion Parameter  c2 # /) # 
genotyped 

50% ~ 0.114 0.293 -0 .001 
(0.109) 

# 0.053 0.000 
(0.051) 

# 0.050 
(0.050) 

# 

100% ~ 0.161 0.286 0.000 
(0.154) 

# 0.075 0.000 
(0.072) 

/~ 0.071 
(0.071) 

# 

-0 .084  

-0 .112  

0.003 

0.037 
(0.037) 

- 0.087 

-0 .110  

0.007 

0.052 
(0.052) 

seen that the use of selective genotyping in 50% of the 
population increases the magnitude of the log likelihood 
by a factor of almost two. Because the amount of 
genotyping is the same in both cases, but the surface 
with respect to # is much steeper in the selectively 
genotyped data, there is more information per genotype 
in the latter case. The LRT when 50% were genotyped 
was 8.94 compared with 5.06 when 100% were 
genotyped, which is interpreted to mean that almost all 
of the information comes from the 50% of progeny in 
the tails, as pointed out by Darvasi and Soller (1992). 
These LRT values correspond to powers to detect a 
QTL with co -- 0.5 of 99% and 89% respectively. While 
in this example the gain in power is not large, because 
power without selective genotyping is already high, the 
gain in power when fewer numbers of genotyped 
progeny are possible would be considerable. This gain in 
power is in agreement with that predicted by Darvasi 
and Soller (1992) who computed gains based on the 
increase in the ratio of between-marker to within- 
marker variances (i.e. under a linear model). 

The similarity between the shape of the likelihood 
surfaces with and without selective genotyping indicates 
that the likelihoods should behave the same during 
maximization (i.e. there are no local maxima) and that 
parameter estimates also behave similarly. The standard 
errors and correlations among estimates for the 
examples with and without selective genotyping are given 
in Table 2. Standard errors are a factor of , , ~  less 
when selective genotyping is used, as is expected because 
the amount of information per progeny is effectively 
doubled. Correlations among estimates are similar in- 
dicating that using information to estimate parameters 
from opposite tails of the population does not introduce 
a dependence between parameters. 

Discussion 

The numerical method of deterministic sampling de- 
monstrated here can be used to gain insight into the 
behaviour and properties of multi-parameter likelihood 
functions used in linkage analyses of quantitative traits. 
The examples illustrate how it can be used to determine 
the behaviour, power, accuracy and bias in likelihood 
functions and maximum-likelihood estimators. Such 
information is useful for not only determining the 
optimum design of an experiment but also the 
optimum form of analysis (e.g. the statistical model 
used). This method has a major advantage in terms 
of computing costs over the alternative method 
of performing a large number of stochastic simula- 
tions to empirically evaluate these properties 
(e.g. Knott  and Haley 1992; Van Ooijen 1992; Darvasi 
et al. 1993). This means that deterministic sampling may 
be able to explore cases that are impossible to explore 
using stochastic simulation because of computing con- 
straints. 

The method could also be used to evaluate the conse- 
quences of using inappropriate genetic or statistical 
models by sampling from a true distribution but writing 
the likelihood in terms of an assumed distribution. For 
example, one could explore what happens in cases in 
which there are multiple QTLs in the region, or multiple 
alleles in the population, but the likelihood model as- 
sumes only a single QTL or only two alleles. The 
method could also be used to dissect anomalous behav- 
iour in estimates due to incorrect specification of 
the likelihood function or an inappropriate estimation 
procedure. 

The method is only applicable to situations where the 
large sample properties of maximum-likelihood esti- 
mates hold. For linkage analyses of quantitative traits, 
many observations are required to detect QTLs so this is 
not of great concern. Nevertheless, it should be remem- 
bered that estimates of the power and accuracy of 
estimates are lower-bound estimates and therefore 
should be treated conservatively. It should also be re- 
membered that the method uses an approximation 
which relies on E(logL)~logE(L) and E[exp(L)] 
exp[E(L)]. In large and symmetric distributions the 
error in this approximation is small and therefore it is 
adequate, but for small data sets it may not be. However, 
in the latter case the accuracy of the estimates would be 
low and so it is probable that errors due to the approxi- 
mation are inconsequential. 

The deterministic sampling method is limited to cases 
where the likelihood function can be written explicitly 
and where the component density functions are of 
known form. For very complex likelihood functions, 
such as those for pedigrees involving many types of 
relationships or for likelihoods involving marginal den- 
sities of unknown form, it would be difficult to apply the 
method of deterministic sampling. In such cases, Gibbs 
sampling, an alternative stochastic numerical method 
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for estimating population parameters, can be used (Guo 
and Thompson 1992; Hoeschele 1994). 

Other possible applications not addressed in this 
paper are to assist in the development of new statistical 
models (e.g. models which incorporate a term explaining 
polygenic variation, models explaining multiple QTL 
effects, or linear models for mixed inheritance), to evalu- 
ate alternative experimental designs and mapping 
methods, and to evaluate marker-assisted selection stra- 
tegies. However, it should be noted that computational 
requirements can be high where there is a need to 
deterministically sample from multivariate distributions 
rather than from univariate distributions. 

In conclusion, deterministic sampling offers a way to 
predict adequately the asymptotic statistical properties 
of models and estimators in QTL linkage analyses. This 
approach was shown to be useful in understanding the 
behaviour of various models, sources of bias, and rela- 
tionships among estimates. Other relevant issues to 
QTL linkage analyses could be investigated using this 
approach. 
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